In-depth qualitative and quantitative analysis of composite glycosylation profiles and other micro-heterogeneity on intact monoclonal antibodies by high-resolution native mass spectrometry using a modified Orbitrap
نویسندگان
چکیده
Here, we describe a fast, easy-to-use, and sensitive method to profile in-depth structural micro-heterogeneity, including intricate N-glycosylation profiles, of monoclonal antibodies at the native intact protein level by means of mass spectrometry using a recently introduced modified Orbitrap Exactive Plus mass spectrometer. We demonstrate the versatility of our method to probe structural micro-heterogeneity by describing the analysis of three types of molecules: (1) a non-covalently bound IgG4 hinge deleted full-antibody in equilibrium with its half-antibody, (2) IgG4 mutants exhibiting highly complex glycosylation profiles, and (3) antibody-drug conjugates. Using the modified instrument, we obtain baseline separation and accurate mass determination of all different proteoforms that may be induced, for example, by glycosylation, drug loading and partial peptide backbone-truncation. We show that our method can handle highly complex glycosylation profiles, identifying more than 20 different glycoforms per monoclonal antibody preparation and more than 30 proteoforms on a single highly purified antibody. In analyzing antibody-drug conjugates, our method also easily identifies and quantifies more than 15 structurally different proteoforms that may result from the collective differences in drug loading and glycosylation. The method presented here will aid in the comprehensive analytical and functional characterization of protein micro-heterogeneity, which is crucial for successful development and manufacturing of therapeutic antibodies.
منابع مشابه
Analyzing Protein Micro-Heterogeneity in Chicken Ovalbumin by High-Resolution Native Mass Spectrometry Exposes Qualitatively and Semi-Quantitatively 59 Proteoforms
Taking chicken Ovalbumin as a prototypical example of a eukaryotic protein we use high-resolution native electrospray ionization mass spectrometry on a modified Exactive Orbitrap mass analyzer to qualitatively and semiquantitatively dissect 59 proteoforms in the natural protein. This variety is largely induced by the presence of multiple phosphorylation sites and a glycosylation site that we fi...
متن کاملResolving the micro-heterogeneity and structural integrity of monoclonal antibodies by hybrid mass spectrometric approaches
For therapeutic monoclonal antibodies (mAbs), detailed analysis of the structural integrity and heterogeneity, which results from multiple types of post-translational modifications (PTMs), is relevant to various processes, including product characterization, storage stability and quality control. Despite the recent rapid development of new bioanalytical techniques, it is still challenging to co...
متن کاملFull Characterization of Heterogeneous Antibody Samples Under Denaturing and Native Conditions on a Hybrid Quadrupole-Orbitrap Mass Spectrometer
MS analysis of antibodies at the protein and peptide levels is critical during development and production of biopharmaceuticals. The compositions of current generation therapeutic proteins are often complex due to their heterogeneity caused by various modifications which are relevant for their efficacy. Intact proteins analyzed by ESI-MS are detected in higher charge states that also provide mo...
متن کاملIn-Depth Glycoproteomic Characterization of γ-Conglutin by High-Resolution Accurate Mass Spectrometry
The molecular characterization of bioactive food components is necessary for understanding the mechanisms of their beneficial or detrimental effects on human health. This study focused on γ-conglutin, a well-known lupin seed N-glycoprotein with health-promoting properties and controversial allergenic potential. Given the importance of N-glycosylation for the functional and structural characteri...
متن کاملAnalysis of intact monoclonal antibody IgG1 by electron transfer dissociation Orbitrap FTMS.
The primary structural information of proteins employed as biotherapeutics is essential if one wishes to understand their structure-function relationship, as well as in the rational design of new therapeutics and for quality control. Given both the large size (around 150 kDa) and the structural complexity of intact immunoglobulin G (IgG), which includes a variable number of disulfide bridges, i...
متن کامل